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EXECUTIVE SUMMARY
Highlights
▪▪ Forests have enormous potential to mitigate against 

climate change and could help the world reach the 
goals of the 2015 Paris Climate Agreement. Forests 
soak up CO2 and deforestation releases it.

▪▪ An increasingly diverse menu of methods is being 
used by countries and international research 
organizations to monitor forests and estimate rates of 
deforestation. These multiple methods produce results 
of various quality, which is a barrier to cross-country 
comparisons and leads to confusion about which 
methods and results are most accurate, especially 
for countries claiming results-based payments for 
initiatives to halt deforestation. 

▪▪ This working paper explains how much and 
why results differ between nationally reported 
deforestation estimates and the Global Forest Change 
(GFC) tree cover loss data of Hansen et al. (2013). 

Across all REDD+ countries, the GFC data represent 
an unbiased proxy for tropical deforestation and are 
produced for a fraction of the cost of what has been 
invested in national forest monitoring systems.1 

▪▪ Opportunities to align, adapt, or customize global data 
for national forest monitoring and reporting may help 
reduce costs and improve the long-term sustainability 
and comparability of national systems, while 
maintaining desired levels of accuracy and national 
ownership. 
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Background
Forests are a critical component of any global 
strategy to mitigate climate change. Article 5 of the 
Paris Agreement under the United Nations Framework 
Convention on Climate Change (UNFCCC) encourages 
all Parties to make full use of forests for climate change 
mitigation, and explicitly calls for Parties to move 
forward with REDD+ implementation. REDD+2 is the 
internationally agreed framework for incorporating forests 
into the emission reduction strategies of developing 
countries. Critically, REDD+ includes financial incentives 
in the form of “readiness” and “implementation” funding 
as well as “results-based” payments to countries. 

How countries measure and report emission 
reductions is of critical importance to the success of 
REDD+. National forest monitoring systems must be widely 
perceived as credible by both domestic and international 
stakeholders to enable flow of results-based payments for 
REDD+. More broadly, robust forest monitoring systems 
are needed to accurately and consistently monitor progress 
toward the target of keeping global temperature rise below 
2°C as set by the Paris Agreement. 

The Problem: Too Many Numbers
Requirements of REDD+ reporting outlined under 
the 2013 Warsaw Framework have generated 
funds and interest in enhanced methods for 
deforestation monitoring. More than US$6 billion 
has been pledged toward REDD+ readiness activities, a 
portion of which includes the creation of baseline data 
and national forest monitoring systems. Investments to 
date have increased capacity for national reporting in 
developing countries. 

A situation has arisen in which different data are 
being produced by different groups for different 
purposes, using different methods and time 
periods, and leading to divergent results. Because 
there is no consensus on deforestation monitoring 
methods, REDD+ countries are using a diverse range of 
methods to generate national deforestation estimates. 
Different forest definitions, reference periods, and 
methods used by countries leads to deforestation results 
that are not directly comparable across countries or over 
time.

This lack of comparability may limit the credibility 
of REDD+ transactions in future carbon markets, 
which are likely to demand rigorous and 
internationally comparable results. It also impedes 

global efforts under the UNFCCC to take stock of progress 
made collectively by countries in implementing their 
nationally determined contributions (NDCs) in the forest 
sector. 

The Global Forest Change (GFC) data of Hansen et 
al. (2013) yield national tree cover loss statistics 
using a globally consistent forest definition and 
method. Some in the forest monitoring community 
have questioned the appropriateness of “off-the-shelf” 
applications of these global tree cover loss data for 
national REDD+ reporting. Confusion and controversy 
surrounding differing estimates is not helping to engender 
needed trust in REDD+ and, more broadly, in the use of 
forests for climate change mitigation.

About This Working Paper
This working paper aims to bring greater clarity 
to nontechnical audiences such as climate policy 
makers by offering a systematic comparison 
among methods used and forest monitoring 
results generated by REDD+ countries and global 
forest monitoring initiatives. First, we review 
deforestation estimates in 33 national and subnational 
forest reference emission level (FREL) submissions to the 
UNFCCC, which are intended to serve as country baseline 
data for future conservation efforts. We then explain how 
much and why these results may differ from the globally 
consistent tree cover loss estimates derived from Hansen 
et al. (2013).3 We discuss the potential use of global 
approaches in terms of accuracy and cost savings, as well 
as the potential limitations, and offer recommendations.

Conclusions
The GFC tree cover loss data represent a 
transparent, complete, consistent, and reasonably 
accurate way to monitor tropical deforestation 
in an operational environment that is capable of 
supporting broad policy initiatives. Even without 
adjustments made to fully accommodate national forest 
definitions, GFC tree cover loss data represent an unbiased 
proxy for tropical deforestation reported across all REDD+ 
countries. Differences exist at the scale of individual REDD+ 
countries for a variety of reasons. 

With appropriate filtering to accommodate 
different national forest definitions, the 
alignment of GFC and national estimates would 
likely improve in many cases. In other cases, 
questions remain about the exact reasons for differences 
between national and global data. 
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Beyond its utility as a global forest monitoring 
product, the GFC data are useful in a national 
context in different ways. To date, 9 of 33 countries 
have used GFC data either directly or indirectly in their 
FRELs. This includes those that customized the global 
algorithm to meet national needs (e.g., Peru, Colombia), 
adapted the GFC data for use as a stratification tool in 
sample-based approaches (e.g., Ethiopia, Myanmar, 
Nigeria, Republic of Congo, Sri Lanka), or used the 
GFC data to improve and/or fill gaps in a country’s own 
monitoring system (e.g., Honduras, Madagascar, Lao 
People’s Democratic Republic). 

Both global and national forest monitoring 
systems have benefits and applications beyond 
their role in REDD+, and the GFC tree cover 
loss data are produced for a fraction of the cost 
of what has been invested in national forest 
monitoring systems. This indicates an opportunity to 
increase the use of global datasets in national accounting 
and reporting. For many countries, using freely available 
and fully operational global data products as an input 
to or direct source of national deforestation monitoring 
data could help reduce costs and improve long-term 
sustainability, while maintaining desired levels of accuracy 
and ownership. 

Recommendations
We make several recommendations on how to increase 
utility and adoption of global datasets for national 
accounting and reporting under REDD+. They fall under 
the categories of aligning global vs. national data, adapting 
off-the-shelf global data to meet national needs, and 
customizing the GFC algorithm to produce tailored, wall-
to-wall national maps of deforestation. 

Align global and national deforestation 
monitoring products for consistency and country 
needs. Inconsistent results among countries, combined 
with the high costs of creating and maintaining unique 
national forest monitoring systems, suggest that REDD+ 
countries could consider tailoring freely available global 
tree cover loss data to meet national reporting needs. 
Conversely, the international remote sensing community 
could deliver products that align more closely to what 
countries need for national forest monitoring, such as 
maps of land use change rather than land cover change. 

To help align these data, REDD+ countries 
should make their spatial forest monitoring 
data available for public review in a centralized 
location as part of the FREL technical assessment 
process. This would enable analysts to critique 
and compare national and global monitoring efforts 
more easily, leading to continuous improvement and 
comparability of forest monitoring at all scales. REDD+ 
countries stand to benefit collectively from more aligned, 
cheaper, and more credible forest monitoring systems 
that achieve greater consistency in results at national and 
international levels. 

Adapt and assess global products to meet national 
needs for REDD+. The GFC tree cover data can be 
filtered to accommodate any country’s forest definition. 
Then, the resulting map can be used as an input to 
stratified sampling to quickly generate a national average 
historical deforestation rate with a known uncertainty 
range at relatively low cost. The accuracy of the global, 
“off the shelf” map can also be assessed for a national 
context. If the global tree cover loss map that has been 
adapted for the national context is assessed to be accurate 
at the national level, if the map errors are unbiased, and 
if the map-based tree cover loss estimates fall within 
the uncertainty bounds of sample-based estimates, then 
the off-the-shelf GFC tree cover loss map and resulting 
statistics should be deemed as fit for purpose by the 
climate policy community as an accurate, precise, and 
cost-effective deforestation monitoring product for the 
country of interest.

Customize the GFC algorithm to produce more 
refined national deforestation maps. While 
sample-based methods allow for estimation of a single 
national deforestation rate with a known uncertainty 
range at relatively low cost, countries should consider the 
additional benefits of a customized, wall-to-wall national 
deforestation map, which allows for total deforestation to 
be disaggregated across time and space. This type of map is 
useful for understanding where deforestation is occurring 
and for designing location-specific deforestation reduction 
policies. All available cloud-free Landsat satellite imagery 
is processed for locations around the world to produce 
the annual Global Forest Change product. The same data 
inputs and algorithms can be easily tailored for national 
or subnational application (by incorporating additional, 
country-specific training sites to train the tree cover 
loss classification model) thus producing more accurate 
national deforestation maps than those currently available 
as subsets of the GFC product. 
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INTRODUCTION
Along with reductions in emissions from fossil fuels 
through shifts to clean energy and transportation systems, 
forests are a critical component of any global strategy to 
mitigate climate change. This section introduces the role 
of forests in the 2015 Paris Climate Agreement, the role of 
forest monitoring in deforestation reduction schemes, and 
requirements for robust forest monitoring systems. 

The Role of Forests in the Paris  
Climate Agreement
Deforestation is responsible for approximately 12 percent 
of global greenhouse gas (GHG) emissions (IPCC 2014), 
and standing forests act as carbon sinks by removing and 
sequestering carbon from the atmosphere. The latest 
models suggest that both halting tropical deforestation 
and increasing forest carbon sinks will be necessary to 
achieve the Paris Agreement goals of net zero emissions in 
the second half of the century and limiting global warming 
to 2°C.

Article 5 of the Paris Agreement under the United Nations 
Framework Convention on Climate Change (UNFCCC) 
encourages all Parties to make full use of forests for 
climate change mitigation, and explicitly calls for them to 
move forward with REDD+ implementation. REDD+ is 
the internationally agreed framework for incorporating 
forests into the emission reduction strategies of 
developing countries, specifically through activities that 
reduce deforestation and forest degradation, promote 
forest conservation and sustainable management, and/
or enhance forest carbon stocks. Critically, REDD+ 
includes financial incentives in the form of “readiness” 
and “implementation” funding (similar to traditional 
development aid) as well as “results-based” payments for 
verified emission reductions. 

The international framework and guidance for 
implementing REDD+ reflects more than a decade of 
intense negotiations to ensure the scheme would be 
effective, efficient, and equitable. (For an excellent 
summary of how REDD+ evolved in international forest 
and climate politics, see Seymour and Busch 2016.) 
Beyond REDD+, countries are also outlining their forest-
related strategies and actions to mitigate climate change in 
their nationally determined contributions (NDCs) under 
the Paris Agreement. 

The Role of Forest Monitoring in REDD+
To receive REDD+ results-based payments, countries 
must monitor changes in forest cover and quantify the 
carbon emissions and removals associated with these 
changes. REDD+ transactions hinge on results-based 
payments, so measurements should be replicable over 
time, accurate, timely, and perceived as credible by 
the international community. Participating developing 
countries must measure reduced emissions and/or 
increased removals from forests against a pre-established 
baseline, known as a forest reference emission level/forest 
reference level (FREL/FRL; Lee and Sanz 2017).

A key obstacle to realizing REDD+, discussed in UNFCCC 
negotiations since 2007,4 was a concern that regularly 
updated and available data on forest cover change in 
developing countries were insufficient to support timely 
and accurate monitoring. Although forest inventories—the 
traditional means for quantifying forest cover and forest 
change—have been established in developed countries 
for decades, developing countries historically lacked the 
capacity to conduct regular national forest inventories. 
Furthermore, since inventories are time and resource 
intensive, they are typically carried out at most only every 
five years, even in developed countries. 

Over the past decade, satellite imagery has emerged as 
an increasingly efficient, effective, and affordable means 
to regularly and consistently monitor changes in tropical 
forest cover across countries and over time. Progress 
in this field has advanced rapidly due to the increasing 
availability of free, medium-resolution satellite data,5 

improvement of methods to classify imagery automatically 
using computer algorithms, and enhancements in cloud 
computing to enable large-scale data processing. 

Brazil was the first developing country to establish an 
operational deforestation monitoring system using 
satellite imagery, called the Program for the Calculation 
of Amazon Deforestation, or Programa de Cálculo do 
Desflorestamento da Amazônia (PRODES), which has 
produced annual deforestation maps of the Brazilian 
Amazon since 1988. In 2013, Hansen et al. published 
global, medium-resolution maps of 21st century forest 
cover change for the years 2000 through 2012. Awareness 
and use of these data grew with the launch of Global 
Forest Watch in 2014, which facilitates easy online access 
to these data through an interactive mapping and analysis 
platform and publishes annual updates to the original 
dataset. 
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Box 1  | � �Modalities for Measuring, Reporting, and  
Verifying (MRV) Greenhouse Gas Emissions  
and Removals under REDD+

Under the Warsaw Framework, estimates of the forest 
reference emission levels/forest reference levels (FREL/FRLs) 
should:

▪▪ Adhere to Intergovernmental Panel on Climate Change (IPCC) 
principles of transparency, completeness, consistency, and 
accuracy

▪▪ Maintain consistency with anthropogenic forest-related 
greenhouse gas emissions by sources and removals by sinks as 
contained in each country’s greenhouse gas inventory

▪▪ Be guided by the most recent IPCC guidelines and guidance as 
adopted by the Conference of Parties

▪▪ Be consistent with a step-wise approach

▪▪ Be adjusted for national circumstances, as appropriate

▪▪ Be subnational as an interim measure, although the transition to a 
national FREL/FRL remains the final goal

▪▪ Be updated periodically as appropriate, taking into account 
new knowledge, new trends, and any modification of scope and 
methodologies

National forest monitoring (NFM) systems should:	

▪▪ Use a combination of remote sensing and ground-based inventory 
approaches for estimating emissions and removals, forest carbon 
stocks, and forest area changes

▪▪ Provide estimates that are transparent, consistent, as far as 
possible, accurate, and that reduce uncertainties

▪▪ Produce monitoring results that are transparent and suitable for 
review

▪▪ Build on existing systems, as appropriate

▪▪ Enable assessment of different types of forest in the country, 
including natural forest, as defined by the Party, to ensure that 
safeguards are addressed and respected

▪▪ Be consistent over time and with the established forest reference 
emission levels and/or forest reference levels

▪▪ Be flexible and allow for improvement over time

Through REDD+ finance –nearly $10 billion in public and 
private sector funds have been pledged to date6 (Norman 
and Nakooda 2014) – more developing countries have 
begun to build their own national forest monitoring 
systems taking advantage of freely available satellite 
imagery. As a result, developing countries’ overall capacity 
to monitor forest cover change has improved (Romijn et 
al. 2015). 

Requirements for REDD+ Forest  
Monitoring Systems
Technical progress in satellite-based forest monitoring 
helped give UNFCCC negotiators the confidence to 
advance the political agenda on REDD+. In 2014, they 
achieved consensus on the “modalities” needed for 
measuring, reporting, and verifying (MRV) greenhouse 
gas emissions and removals and for designing national 
forest monitoring systems (Box 1). MRV, and the national 
forest monitoring (NFM) systems that underpin it, are 
the essential tools for linking REDD+ activities to results-
based finance. 

A crucial part of the MRV process is the formal “technical 
assessment” of proposed FRELs/FRLs, the benchmark 
against which performance is measured. The 2013 Warsaw 
Framework modalities (so called because the framework 
was agreed at the 2013 UNFCCC Conference of Parties 
(COP) 19 in Warsaw, Poland) therefore aim to ensure 
that national forest monitoring systems are adequately 
robust, transparent, and continuously improved, 
while allowing for flexibility to account for diverse 
national circumstances. But the Warsaw Framework 
also provides ample room for interpretation, which can 
create challenges for assessing and comparing national 
approaches. 
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ABOUT THIS WORKING PAPER
Data on tropical deforestation are no longer lacking. 
Instead, a situation has arisen in which different data are 
being produced by different groups for different purposes, 
using different methods and time periods, and leading to 
divergent results. 

REDD+ countries are using a diverse range of methods 
to generate national deforestation estimates, and many 
REDD+ stakeholders—particularly those working to 
design more effective forest policies—lack the technical 
knowledge to assess the quality of methods or validity 
of results. In addition, the Global Forest Change (GFC) 
data of Hansen et al. (2013), which provide tree cover loss 
statistics using a globally consistent forest definition and 
method, have caused confusion in the forest monitoring 
community about which deforestation figures are 
“correct” for a given country or region, and why estimates 
sometimes differ so much from one another. It has also 
raised questions from some in the community about the 
appropriateness of “off-the-shelf” applications of GFC tree 
cover loss estimates for national REDD+ reporting. 

This working paper aims to reduce confusion by 
systematically comparing methods used and results 
generated by REDD+ countries and global forest 
monitoring initiatives. First, we review national and 
subnational FREL submissions to the UNFCCC. We 
then attempt to explain how much and why results differ 

between national deforestation estimates and the globally 
consistent tree cover loss estimates derived from Hansen 
et al. (2013).7  We evaluate the strengths and weaknesses 
of national versus global approaches. Finally, we discuss 
the potential benefits of global approaches in terms 
of accuracy and cost savings, as well as the potential 
limitations, and make recommendations to increase the 
utility of global datasets for national application. 

The scope of this paper is limited to one REDD+ 
activity—deforestation— because satellite imagery forms 
the primary data input for forest cover change used by 
REDD+ countries for their deforestation estimates and 
for global forest monitoring initiatives. Because most 
countries do not yet include FRELs/FRLs for other 
REDD+ components such as forest degradation or carbon 
stock enhancement, we do not include these in our 
assessment. We also limit this paper to the monitoring 
component related to deforestation area; a similar 
comparison of deforestation emission factors (estimates 
of the change in carbon stocks resulting per unit area) 
derived from national monitoring systems and global 
remote sensing studies may be covered in a future paper. 
Finally, our initial analysis is limited to the deforestation 
rates reported in FRELs submitted by countries to the 
UNFCCC, and excludes those submitted to the World 
Bank’s Forest Carbon Partnership Facility (FCPF). These 
may be incorporated into a future working paper.

Table 1  |  Paraguay as an Example of How Different Forest Definitions Were Developed for Different Reporting Purposes

REPORTING PURPOSE
FOREST DEFINITION

MINIMUM AREA (HECTARES) MINIMUM CROWN COVER 
(PERCENT)

MINIMUM TREE HEIGHT 
(METERS)̀

FAO Forest Resources Assessment 0.5 10 5

UNFCCC Kyoto Protocol’s Clean Development Mechanism 0.5 25 5

UNFCCC REDD+ reportinga 1 (western region) 10
(eastern region) 30

(western region) 3
(eastern region) 5

Note: a. In its FREL, Paraguay notes a technical limitation that forest cover below the 30 percent threshold cannot be detected with the use of medium-resolution imagery, so the effectiveness of 
detection and monitoring of any conversion is limited to areas with greater than 30 percent canopy cover.
Source: WRI authors.
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Figure 1  |  �Forest Definitions Used by Countries for  
REDD+ Accounting
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HOW ARE COUNTRIES DEVELOPING THEIR 
FRELS AND NFM SYSTEMS? 
As of mid-2018, 38 FRELs from 34 countries had been 
submitted to the UNFCCC for technical assessment.8 
We looked at how these countries addressed key 
methodological elements related to estimating 
deforestation. The historical average area of deforestation, 
when combined with emission factor data, represents a 
benchmark for assessing each country’s performance in 
reducing deforestation-related emissions under REDD+. 

Definitions
Some differences in deforestation estimates from country 
to country can be traced to the use of different definitions 
of key terms such as forest, natural forest, deforestation, 
and reference period. This section explains how these 
definitions can vary.

Forest. How a country defines its forest area impacts 
deforestation monitoring results by prescribing which areas 
are included and excluded from analysis. Forest definitions 
can vary across countries and within a country, depending 
on the reporting purpose and/or region within the country 
(Table 1). Most forest definitions include thresholds for 
minimum area, crown cover, and tree height.

The primary objectives of countries in establishing forest 
definitions are to suit specific policy purposes and to 
address unique national or subnational forest contexts. In 
addition, international processes have played a significant 
and evolving role in shaping national forest definitions. 

Biophysical definitions. All countries reporting to 
the Food and Agriculture Organization of the United 
Nations’ (FAO) Forest Resources Assessment (FRA) are 
advised to define forest as at least 0.5 hectare, 10 percent 
crown cover, and 5 meters in height.9 Under the UNFCCC, 
countries define forests as they wish when reporting their 
national GHG inventories but for the UNFCCC’s Kyoto 
Protocol, Parties agreed to define forests using distinct 
but flexible ranges: minimum area between 0.1 and 1 
hectare, crown cover of 10–30 percent, and tree height of 
2–5 meters. Most developing countries had little reason 
to apply the Kyoto Protocol definition, so the creation of 
REDD+ in 2007 catalyzed many national processes to 
establish forest definitions, involving lively exchanges 
among national and international organizations.10 Figure 
1 summarizes how countries have defined their forests for 
the purposes of REDD+ and demonstrates the variability 
that reflects each country’s unique national circumstance.

Source: Data from REDD+ country FREL submissions to the UNFCCC, compiled and analyzed by WRI authors.
Note: Countries excluded from lists either do not apply a threshold or apply thresholds different from those included 
in the figure. These include: Area: Cote d’Ivoire (0.1 ha) Congo, Dem. Rep. (0.1 ha); Mexico (50 ha). Crown cover: Ghana 
(15%), Nigeria (15%), Chile (10% for arid/semi-arid conditions, 25% for “more favorable conditions”). Height: Ethiopia (2 
m), Mongolia (2 m), Brazil Cerrado (2 m), India (no height threshold), Lao PDR (no height threshold).
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Land use definitions. In addition to the biophysical 
thresholds of area, crown cover, and tree height often 
used to define forests, many countries also incorporate 
information about the prevailing land use into their 
definition, as characterized by the “total of arrangements, 
activities, and inputs that people undertake in a certain 
land cover type” (Di Gregorio and Jansen 1998). This is 
largely a carryover from FAO reporting; however, GHG 
reporting for the LULUCF (land use, land use change, 
and forestry) sector under the UNFCCC also requires 
a land use definition (IPCC 2006). Therefore, even if 
land is temporarily devoid of tree cover, a country may 
still classify it as forest if it is officially designated as 
a forest land use. Conversely, lands that technically 
meet biophysical thresholds used to define forest may 
be classified as other land uses (e.g., urban areas and 
settlements with trees or agricultural land with trees, 
depending on its intended use). 

For the purposes of defining forests for REDD+, 19 
countries have defined forest based purely on biophysical 
criteria, while 14 also include a land use component in 
their definition (Table 2). 

Natural forest. In 2010, UNFCCC Parties agreed on 
important requirements and prerequisites to ensure that 
REDD+ would yield positive results for forests, forest-
dependent people, and the climate. The seven agreed 
“Cancun safeguards”11 cover a range of issues. One issue 
involves the distinction between natural and plantation 
forests to ensure that REDD+ actions would not lead 
to clearcutting natural forests and replacing them with 
industrial tree plantations, which could provide some 
services but would otherwise result in negative impacts. 

Most countries include both natural forests and forest 
plantations in their REDD+ forest definition, but some 
have not specified if or how changes between natural 
forests and forest plantations will be tracked (Table 3). 
While many REDD+ countries include forest plantations 
(e.g., forests used for timber and pulp production) in 
their forest definitions, most exclude tree crops grown 
for an agricultural use (e.g., cocoa, citrus, oil palm, or 
rubber). Exceptions include Vietnam, which includes 
rubber plantations as forest; Honduras, which includes 
agroforestry systems (coffee and cocoa) as forest; and the 
Democratic Republic of Congo, which includes rubber and 
cocoa plantations, but not oil palm or coffee, as forest.

Table 2  |  �Countries Using Biophysical vs Biophysical plus  
Land Use in their REDD+ Definition of Forest

COUNTRIES THAT USE BIOPHYSICAL CRITERIA ONLY IN DEFINITION OF 
FOREST FOR REDD+

Brazil, Colombia,a Costa Rica, Congo, Dem. Rep.,a Ecuador, Ethiopia, 
Ghana, Guyana, India, Indonesia,a Madagascar, Mongolia,a Nepal,a 
Nigeria, Paraguaya, Peru, Tanzania, Sri Lanka,a Zambiaa

COUNTRIES THAT USE BIOPHYSICAL CRITERIA + LAND USE IN DEFINITION OF 
FOREST FOR REDD+

Cambodia, Chile, Cote d’Ivoire, Honduras, Mexico, Mozambique, 
Myanmar, Lao PDR, Panama, Papua New Guinea, Republic of Congo, 
Suriname, Uganda, Vietnam 

a.  The official forest definition as stated in the FREL is based on forest cover + land use, but 
the operational forest definition for REDD+ deforestation monitoring is based on forest cover 
(biophysical criteria) only.

Deforestation. Under the UNFCCC, deforestation is 
defined as the “direct human-induced conversion of 
forested land to non-forested land.”12 Under FAO’s Forest 
Resources Assessment, deforestation is defined as the 
conversion of forest to another land use (e.g., removal of 
forests for agriculture) and, more recently, “the conversion 
of forest to other land use independently whether human-
induced or not” (FAO 2018). This definition includes 
permanent reduction of tree canopy cover below the 
minimum 10 percent threshold but excludes areas where 
trees are expected to regenerate. Thus, in both UNFCCC 
and FAO definitions, a temporarily unstocked forest is not 
considered to be deforestation.

Perhaps the greatest source of diversity and ambiguity 
in deforestation definitions under REDD+ is the case 
of shifting cultivation, a type of small-scale farming 
prevalent across the tropics particularly in Sub-Saharan 
Africa and Southeast Asia. A generalized cycle of shifting 
cultivation starts when forest is cleared to make a garden 
or agricultural field. Larger trees are either left standing, 
felled and used as timber, or left on the ground to decay. 
The resulting wood residue is burned to clear remaining 
vegetation and release nutrients which fertilize the soil. 
After burning, crops are planted and harvested, the land is 
abandoned to go fallow, and it eventually reverts back to 
forest if left undisturbed. 
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Table 3  |  �How REDD+ Countries Count Forest Plantations in their REDD+ Forest Definition

FOREST PLANTATIONS EXCLUDED 
FROM REDD+ FOREST DEFINITION

FOREST PLANTATIONS INCLUDED 
IN REDD+ FOREST DEFINITION BUT 
TRACKED AS A SEPARATE CLASS

FOREST PLANTATIONS INCLUDED IN 
REDD+ FOREST DEFINITION AND NOT 
TRACKED AS A SEPARATE CLASS

FOREST PLANTATIONS NOT 
ADDRESSED IN FREL

Brazil, Chile, Colombia, Indonesia, 
Madagascar

Cambodia, Ecuador, India, Lao 
PDR, Mexico, Mozambique, 
Panama, Papua New Guinea, 
Paraguay, Uganda, Vietnam

Cote d’Ivoire, Costa Rica, Dem. 
Rep. of Congo, Ethiopia, Ghana, 
Myanmar, Nepal, Nigeria, Peru, 
Tanzania, Sri Lanka, Zambia

Guyana, Honduras, Mongolia, 
Republic of Congo, Suriname

a. Ghana commissioned a separate study to allow removal of agricultural tree areas (e.g., cocoa) from deforestation totals, but does not track forest plantations as a separate forest class.

The first cycle, the initial clearing of forest, would be 
considered deforestation under a land-use definition of 
forest because forest was cleared to create a new agricultural 
field. But in sparsely populated areas, subsequent fallows 
are typically long enough (about 8 years in Lao People’s 
Democratic Republic13 to about 18 years in the Democratic 
Republic of Congo [Molinario et al. 2017]) for natural forest 
to recover, although recovery is to a secondary rather than 
primary forest. When fallow periods are long enough to allow 
regeneration of an ecosystem that exhibits the structural 
traits of a forest such as tree cover and height thresholds, 
shifting cultivation is viewed by some as a sustainable type 
of land use without long-term negative impacts (Filho et al. 
2013). But growing populations and pressure on land will 
likely result in the expansion of shifting agriculture systems 
into nearby forests in the future (Molinario et al. 2017), 
leading to first-time clearing in new forest areas and resulting 
emissions. 

The impermanence of tree cover in areas under 
existing shifting cultivation cycles has implications 
for deforestation monitoring, and REDD+ countries 
are inconsistent in how they account for land areas 
under shifting cultivation cycles. In Suriname, all areas 
of shifting cultivation are considered forest, and any 
conversion of land considered primary forest into shifting 
cultivation is considered forest degradation rather than 
deforestation. In neighboring Guyana, existing areas 
of shifting cultivation are considered cropland (i.e., 
nonforest land) and excluded from both deforestation 
and degradation estimates. Papua New Guinea identifies 
shifting cultivation as a major driver of deforestation, 
accounting for 63 percent of all deforestation between 
2000 and 2015. In Lao PDR, shifting cultivation cycles are 
split into their component parts and tracked separately, 
with fallows classified as forest land and crops classified 

as crop land. In Mozambique’s land cover/land use map, 
a shifting cultivation subclass is included in both the 
cropland class (“shifting cultivation with open to closed 
forest areas”) and the forest class (“forest with shifting 
cultivation”). Other African countries where shifting 
cultivation is prevalent, including Cote d’Ivoire, the 
Republic of Congo, and the Democratic Republic of the 
Congo, track gross loss of forest cover, meaning that the 
clearing of secondary forests on shifting cultivation fallows 
is counted as a deforestation event as well as primary 
forest clearing. Unless regrowth is carefully tracked, 
deforestation will be overestimated in these countries 
compared to others where gain/loss dynamics of shifting 
cultivation land uses are excluded or tracked separately.

Reference Period 
To participate in REDD+, a country must determine what 
the deforestation rate would have been in the absence of 
REDD+ incentives. Unless this rate is adjusted upward or 
downward to consider specific national circumstances,14 
the historical average deforestation rate is used as an 
input into the FREL/FRL. 

The reference period is typically set by countries to cover 
approximately the past 10 years, although the exact 
dates differ from country to country (Figure 2) based 
on data availability. The choice of years in the reference 
period can impact the FREL/FRL, and countries might 
strategically opt for reference periods that maximize the 
average historical deforestation rate and thus the potential 
for future REDD+ payments if it declines. Indonesia and 
Brazil, two countries with historically high deforestation 
rates, chose longer reference periods stretching back to the 
1990s, resulting in higher average historical deforestation 
rates than would be the case if only more recent years 
were included in the reference period. 
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Figure 2  |  �Reference Periods Used by Countries in Estimating Rates of Historical Deforestation
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Method Used for Estimating  
Deforestation Rates
All REDD+ countries use satellite imagery to estimate 
historical deforestation, but the type of imagery and the 
method used to interpret it vary (Figure 3). Wall-to-wall 
map-based approaches (analyses that cover the full spatial 
extent of forested areas) and sample-based approaches 
(analyses that derive estimates based on statistically 
representative sample areas) are both suitable methods 
for analyzing forest cover change. Whichever method is 
selected, best practice guidance requires that results are 
repeatable by different analysts (GOFC-GOLD 2016). 

Wall-to-wall map-based approaches 
Creating maps of land cover and land cover change 
involves a mix of computer algorithms and human 
expertise to interpret satellite imagery. Many methods 
can be used to classify images, and the selection depends 
on the available human, data, and financial resources, the 
availability of image processing software, and the type of 
forest to be monitored. Several methods to estimate rates 
of deforestation using wall-to-wall map-based approaches 
are described below.

Post-classification change detection. This method 
involves mapping land cover or land use at specific time 
steps, lining up the maps, and summing the forest areas 
that transition to nonforest over time. If the map images 
are not annual, an average annual deforestation rate 
is calculated by dividing the total area of deforestation 
by the number of years elapsed between mapped years. 
This approach is referred to as “post-classification” change 
detection because change is calculated after land cover 
classes have been assigned to each time step. This method 
can be used to track changes among Intergovernmental 
Panel on Climate Change (IPCC) land use/land cover 
categories (e.g., forest land, crop land, settlements) and/or 
among forest types (e.g., natural forest vs. plantation forest). 

However, this method is prone to error in the resulting 
change statistics because it progressively propagates 
classification errors that may be present at each time 
step, particularly if maps for different years were created 
by different groups or using different classification 
methods. The accuracy of this method also depends on 
how many land cover/land use categories are included 
in the resulting change matrix; high accuracy of many 
different change classes is difficult to achieve. Map classes 
can be aggregated to increase measures of accuracy, 
because what matters for estimating a deforestation rate 

for REDD+ is the accuracy of the change class from forest 
to nonforest. Countries that use post-classification 
change detection include: Ecuador, Ghana, India, 
Indonesia, and Uganda. 

Direct change detection. This method produces the 
same end product as the post-classification method – a 
map of forest cover change for a given year or series of 
years – but uses a different approach to detect change. 
In this method, satellite images for two or more points 
in time are examined for spectral similarities and 
dissimilarities to identify areas containing a likely change 
in land cover, thus eliminating the step of assigning land 
cover classes to the two points in time as required for post-
classification change detection. Direct change detection 
can be done visually or using digital image processing 
algorithms, in which “training sites” are classified visually 
by an interpreter and then used to train an automated 
computer algorithm to classify other areas in the map 
that are similar to the training sites. The total area of 
deforestation may be calculated directly from the change 
maps, or the maps may be used as an input for stratified 
sampling (see below).

Many national analyses applying the direct change 
detection method use single image footprints, or scenes, as 
the basic unit of analysis. This compromises consistency 
between scenes and requires analysts to apply complex 
data processing techniques before metrics between 
different dates can be compared. Such data processing 
steps include corrections for different atmospheric 
conditions, sun positions, and satellite calibrations. Until 
recently, many of these techniques were not automated 
and in many developing countries, capacity to quickly 
process thousands of images from a raw state to a finished 
land cover change product was limited.

Hansen et al. (2013) developed a standardized and 
automated processing scheme for deriving cloud-
free time-series metrics from Landsat data, enabling 
preprocessed satellite data to be compiled and assembled 
quickly into time-series metrics and composites. All 
available data are used to characterize change, such that 
two neighboring pixels could use data from different 
dates depending on the availability of cloud-free imagery. 
Once all pixels have been classified and those containing 
change have been identified, they can be assigned to 
the year in which change occurred. Time-series analysis 
can be thought of as stock market analysis, with an 
algorithm tuned to search for a signal that shows a sudden 
and persistent drop in value, in this case a decrease in 
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Figure 3 |  �Two Approaches to Estimate Historical Deforestation Rates 
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vegetation cover that indicates deforestation. This method 
uses all available data and can therefore potentially 
detect change more accurately, and the change map can 
be derived and iterated quickly for the entire area. The 
use of standard preprocessed data inputs also promotes 
consistency across countries that use this method. 

However, this type of direct change detection is much 
more computationally intensive than other methods. For 
many years, the high cost of obtaining and processing 
satellite data prevented the application of this time-
series method for deforestation monitoring at scale. 
Advances in cloud computing and the availability of free 
Landsat imagery enabled the creation of annual maps 
of global forest change using direct change detection. 
After the publication of this method (Hansen et al. 2013), 
the same researchers at the Global Land Analysis and 
Discovery (GLAD) team at the University of Maryland, 
began collaborating with many countries to reproduce 
their system at a national scale using the same pixel-
based time-series approach, but customized for national 
conditions using locally specific training data. Countries 
that use direct change detection include: Mexico, 
Vietnam, Cambodia, Chile (visual interpretation); 
Brazil, Costa Rica, Guyana, Lao PDR, Honduras, 
Madagascar (classification model based on 
direct change detection between two dates); and 
Colombia, Peru (classification model based on 
Hansen et al. time-series analysis).

Sample-based approaches 
While the remote sensing community has historically 
recommended wall-to-wall map-based approaches 
(Olander et al. 2008, GOFC-GOLD 2016) to estimate land 
cover change at a national scale, some statisticians (e.g., 
Oloffson et al. 2014) have voiced strong concerns that 
calculating deforestation areas by summing change areas 
identified through computerized classification algorithms 
may result in systematically biased deforestation estimates 
due to map classification errors. Citing IPCC good 
practice guidance that emissions/removals should be 
“neither over- nor underestimated” and that uncertainties 
should be reduced “as far as is practicable” (Penman et 
al. 2003), they have encouraged countries developing 
FRELs to derive deforestation estimates through 
statistical analysis of reference samples that are visually 
interpreted by analysts using more precise data and/or 
better interpretation techniques. Because deforestation 
is interpreted only for the sample areas, sampling has 
long been considered a cost-efficient alternative to wall-
to-wall mapping. Furthermore, a well-designed sampling 
approach can provide a measure of precision to quantify 
uncertainty and construct confidence bounds around a 
sample-based deforestation estimate. There are two types 
of sampling, described below.

Stratified random sampling. A stratified random 
sampling approach uses information about the study area 

Table 4 |  �Advantages and Disadvantages of Two Methods of Estimating Deforestation Rates Used by  
Countries in Their FREL Submissions

METHOD ADVANTAGES DISADVANTAGES

Wall-to-wall 
map-based 
approaches   
(with visual 
checks)

▪▪ Can be more easily reproduced than sample-based 
approaches

▪▪ Map can be used to identify specific locations and 
years where deforestation is occurring

▪▪ Rapid and automatic updates possible, including 
annual estimates

▪▪ Allows for versioning/updating to reflect improvements 
over time through the incorporation of new input data

▪▪ More difficult to develop and implement
▪▪ Classification algorithms used may lead to bias in the resulting deforesta-

tion estimate
▪▪ Uncertainty of area estimate is unknown in the absence of reference 

sample data 

Sample-based 
approaches

▪▪ Most similar to classic forest inventory approaches
▪▪ Easy to implement 
▪▪ Can attribute additional contextual information to 

each sample, e.g., land use
▪▪ Deforestation estimate is constrained by a quantified 

measure of uncertainty

▪▪ Time consuming
▪▪ Deforestation estimates apply only at the scale for which sampling was 

designed
▪▪ Statistics derived from samples no longer match deforestation areas in 

the map, leading to inconsistencies especially if the map is used to derive 
other area statistics beyond REDD+

▪▪ Accuracy of results is highly dependent upon the skill of individual interpreters 
and is difficult to quantitatively measure; uncertain reproducibility of results
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to constrain the selection of sample points; the stratification 
design may or may not be informed by land cover change 
maps. For REDD+ deforestation monitoring purposes, 
reference samples are distributed within “strata” typically 
defined from relevant map classes of a forest change map 
(e.g., forest, nonforest, forest loss, forest gain), but strata 
could also be administrative regions, ecoregions, or any 
other nonoverlapping division of land area (Oloffson et al. 
2014). Each sample point within a stratum is interpreted 
visually over the defined reference period (e.g., 2006 to 2015) 
using high-quality reference data such as high-resolution 
satellite imagery. After all samples are visually interpreted, 
the area of deforestation is calculated based on information 
about the total area contained within each stratum and the 
proportion of samples within each stratum that registered as 
deforestation. A stratified design requires far fewer samples 
to obtain a similar level of accuracy and precision as a 
systematic sampling design (Broich et al. 2009). 

The result is an estimate of the annual average deforestation 
rate over the reference period bounded by a given confidence 
interval, the size of which is determined by the uncertainty 
associated with sampling. Sample-based deforestation 
estimates can be considerably higher or lower than those 
calculated from wall-to-wall map-based approaches, even 
when the same maps were used for stratification. No change 
map is produced through sample-based approaches, but 
reference samples can also be used to assess the accuracy 
of an existing forest change map. Countries that use 
stratified random sampling include: Cote d’Ivoire, 
Democratic Republic of the Congo, Ethiopia, 
Myanmar, Nepal, Nigeria, Republic of Congo, Sri 
Lanka, Suriname, Tanzania, Zambia, and Paraguay.

Systematic sampling. Systematic sampling is similar 
to stratified random sampling, except samples are 
distributed across the country in a regularly spaced grid, 
often in the same locations as national forest inventory 
plots, instead of using a map to design a stratified 
random sample. High resolution imagery is visually 
interpreted at each point over the defined reference 
period to classify samples into specific land cover/land 
use categories. With systematic sampling, it can be 
difficult to capture rare classes of change that occur over 
small areas, particularly deforestation. Like stratified 
sampling, systematic sampling produces an estimate 
of deforestation for the reference period bound by a 
confidence interval representing the uncertainty of a 
sample-based estimate. Countries that use systematic 
sampling include: Panama, Papua New Guinea, 
Mozambique, and Mongolia.

Which method is best?
There is currently no consensus approach to forest 
monitoring over large areas. Expert opinion in the 
discourse about the merits of wall-to-wall, map-based 
approaches vs. sample-based approaches continues to 
evolve, as do the data and technology available to estimate 
deforestation rates. Prior to the 2008 delivery of the full 
Landsat archive by the U.S. Geological Survey (USGS) 
at no cost to scientists, the remote sensing community 
was accustomed to purchasing single Landsat scenes15 to 
incorporate as reference samples into stratified sampling 
designs for large-area deforestation mapping using 
lower-resolution satellite data from systems other than 
Landsat (Achard et al. 2002; Hansen et al. 2008; Brioch 
et al. 2009; Zhu et al. 2014). Deforestation as estimated by 
remote sensing specialists, who visually interpreted each 
individual Landsat scene, was the “truth” against which 
all other deforestation models were compared. With the 
opening of the Landsat archive and other free sources of 
medium-resolution satellite imagery, estimating areas 
and rates of deforestation using wall-to-wall map-based 
approaches proliferated, with IPCC’s spatially explicit 
“Approach 3”16 recommended (GOFC-GOLD 2007). Map-
based approaches more easily enable disaggregation of 
national deforestation spatially (by region), temporally (by 
year), or by disturbance type (driver).

More recently, free satellite imagery with higher-
resolution than Landsat became available in Google Earth. 
This, combined with the limited experience and capacity 
of many developing countries to implement complex data 
preprocessing steps and land cover change classification 
models, led the expert community engaged in REDD+ 
capacity building to encourage use of sample-based 
approaches to estimate deforestation area (GFOI 2016) 
in lieu of (or as a complement to) wall-to-wall map-based 
approaches. Sample-based approaches are easier to 
implement, but differences in visual image interpretation 
by different analysts can lead to inconsistent results. 

All methods summarized above for estimating 
deforestation rates are valid if implemented correctly. 
Regardless of which method is chosen (Table 4), image 
analysis by a skilled interpreter is an indispensable 
requirement for estimating land cover/land use change 
with high accuracy. The decision on which method to use 
should consider various factors including cost, required 
effort, data processing and analysis speed, need for spatial 
information about forests for other purposes beyond 
REDD+, and the need for consistency of results at national 
and international levels (Potapov et al. 2014). 
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Accuracy vs. Uncertainty
All methods described above result in errors due to 
data limitations, imperfect classification algorithms, 
and analyst errors and bias. Uncertainty was not as 
large of a focus in early FREL submissions (e.g., Brazil, 
Guyana) as in later submissions, which have been 
encouraged through the technical assessment process 
to explicitly address this issue. The uncertainty of 
results obtained through sample-based approaches 
are expressed through the calculation of confidence 
intervals around an average deforestation rate. Wall-
to-wall deforestation maps on their own cannot provide 
information about how good or bad the estimates 
derived from the maps are. Therefore, reference 
samples serve as the “truth” to estimate the accuracy of 
maps. 

Table 5 shows the accuracy of deforestation maps 
developed by countries in their FREL process, where 
reported. Three accuracy measures are given: user’s 
accuracy, producer’s accuracy, and overall accuracy. 
User’s accuracy indicates how much deforestation 
detected in the map reflects actual deforestation on 
the ground. Producer’s accuracy measures how much 
deforestation occurs on the ground that is missed by 
the map. Overall accuracy incorporates the accuracy 
of both change and nonchange classes. In most cases, 
nonchange pixels (e.g., forest remaining as forest) 
significantly outnumber change pixels, so looking 
only at overall map accuracy can be deceptive. Many 
correctly classified nonchange pixels can cause overall 
accuracy to be high even if the accuracy of change 
pixels (in this case, deforestation) is low. 

For many countries, only the overall accuracy of land 
cover maps for specific years is provided in the FREL 
documentation (Table 5). Where reported, the accuracy 
of the loss/deforestation class over the reference period 
varies widely among countries, ranging from 12 to 
98 percent. These accuracy statistics reflect both the 
accuracy of the map, but also potentially the uneven 
quality and inconsistency in the interpretation of 
reference samples by different image analysts (Box 
2). Validation of static land cover maps is difficult, 
and change products are even more challenging to 
appropriately validate. Table 5 shows that accuracies 
of the GFC maps as used in a national context appear 
comparable to the reported accuracies of national 
deforestation maps, but more information is needed 
about the accuracy of the loss class specifically in 
national maps before this conclusion can be drawn.  

Process and Costs of National Monitoring Systems
The international community has invested considerable 
resources to support national forest monitoring 
efforts, particularly related to capacity building in 
developing countries for MRV. Each country’s forest 
monitoring system for REDD+ has been influenced 
by the approaches, methods and definitions of the 
organizations and academic institutions that led the 
capacity building. 

Costs of developing national monitoring systems are 
substantial, but it remains difficult to quantify the 
investments made by countries and donors in their 
monitoring capabilities. Brazil’s monitoring system 
alone costs approximately $1.5 million per year17 to 
run, although this estimate reflects the long-term 
operational cost and does not include the initial 
up-front costs of development, testing, infrastructure 
investments, or capacity building that led to the 
system’s now routine operation. 

Estimating the costs of developing FRELs and building 
national forest monitoring systems from scratch for 
other countries is more complex. Drawing on data 
compiled for the REDDX (REDD eXpenditures) 
Initiative from 2009 to 2014, a global analysis by 
Silva-Chavez et al. (2015) showed that nearly $6 billion 
had been pledged for REDD+ across 13 key countries, 
but most of the REDD+ projects tracked had multiple 
REDD+ activities (e.g., stakeholder engagement, rights, 
and tenure) and so it was impossible to disaggregate 
the relative breakdown of financial support going 
specifically to develop FRELs or MRV systems. 
However, 377 of 877 donor initiatives, or nearly 40 
percent, focused on MRV and reference levels (Figure 
4). Furthermore, many donors are supporting the 
creation of national forest monitoring systems for more 
than the sole objective of reporting REDD+ results.

More recently, Lujan and Silva-Chavez (2018) broke 
down available REDD+ finance into the three phases: 
readiness, implementation, and results-based finance. 
The development of FRELs and NFM systems falls 
in the readiness phase. Available and forthcoming 
finance for REDD+ readiness totals at least $6 billion 
in public funds from the World Bank, UN-REDD, U.S. 
Agency for International Development (USAID), and 
the Governments of Germany, Norway, and the United 
Kingdom (Table 6). Private foundations and domestic 
investments provide additional finance. 
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Table 5 |  Accuracy of Maps Used to Inform Deforestation Estimates in Country FREL Submissions (percent accurate)

REGION

GFC MAP ACCURACY (NATIONAL CONTEXT) NATIONAL MAP ACCURACY CHANGE MAPS NOT 
USED TO INFORM 
DEFORESTATION 
ESTIMATECOUNTRY

LOSS CLASS OVERALL 
ACCURACY COUNTRY

LOSS CLASS OVERALL 
ACCURACYUSER'S PRODUCER'S USER'S PRODUCER'S

LA
TI

N 
AM

ER
IC

A

Peru 86% 67% 97% Brazil (Amazon) X X 99% Panama

Colombia X X X Brazil (Cerrado) X X 97%

Chile X X X

Costa Rica X X X

Ecuador X X 94-96%

Guyana X X >97%

Hondurasa 97-98% 89-98% 96%

Paraguay X X 88-89%

Mexico X X X

Suriname X X 99%

AF
RI

CA

Rep. of 
Congo 73% 64% 90% Cote d'Ivoire 66% 68% 81% Mozambique

Ethiopia 24% 51% 75% Dem. Rep. Congo X X X

Nigeria 
(Cross River) 12% 9% 75% Ghana X X X

Madagascara 48-58% 58-75% 76-89%

Tanzania 76% 79% 75%

Uganda 12-74% 2-27% 59-80%

Zambia X X 85%

SO
UT

H 
& 

SO
UT

HE
AS

T 
AS

IA Sri Lanka 79% 89% 75% Cambodia X X 74-85% Mongolia
Papua New Guinea

Myanmar 21% 42% 57% India X X X

Indonesia X X 98%

Lao PDR* X X X

Nepal 82% 99% 83%

Vietnam X X 95%

X = No data reported in the forest reference emission level (FREL).
a. Countries that used the GFC dataset either directly or indirectly in their FREL submission
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Box 2 |  The Importance of Consistent and Accurate Interpretation in Sample-Based Assessments

Visual interpretation of satellite images is often 
not as easy or straightforward as it might seem.  
Even with very high-resolution images (greater 
than 1 meter) in which individual trees and 
shrubs can be seen in the imagery, consistent 
classification of land area into a single, discrete 
land cover category is not always clear. Different 
interpretation of the same images can lead to 
very different outcomes.

In Ethiopia, World Resources Institute is work-
ing with nonspecialist imagery interpreters in 
“mapathons,” where people from a certain region 
of a country are brought together in a classroom 
setting to receive one-day trainings in the visual 
interpretation of 50 x 50 meter sample points on 

very high-resolution satellite imagery. Rules are 
established to count trees and assign land cover 
classes based on what is seen in the imagery. 
Each interpreter classifies approximately 100 
points per day, and several interpreters work side 
by side to interpret approximately 10,000 points 
in a week. 
 
When developing land cover maps from these 
sample points, it became clear that different 
interpreters had very different interpretations 
of the same image. Where one interpreter saw 
agricultural fields (during the dry season), 
another interpreted the same land as shrub land, 
or as bare land. As can be seen in the confusion 
matrix below, interpreters also mixed shrubland 

with forest, and cropland with all other classes of 
land cover. 

In sample-based approaches, visual interpreta-
tion of sample points is considered the “truth” 
data upon which deforestation estimates are 
derived. Thus despite the fact that a result-
ing deforestation estimate has a quantified 
uncertainty, the accuracy of the interpretation of 
sampled points (i.e., measurement error) goes 
unquantified. As such, rigorous classification pro-
tocols implemented by highly skilled interpreters 
are essential for accurate and consistent sample 
interpretation, particularly in complex and/or 
highly fragmented landscapes. 

TABLE B2-1  |  CONFUSION MATRIX FOR SODO DISTRICT, ETHIOPIA

FOREST CROPLAND GRASSLAND SHRUBLAND SCRUBLAND TOTAL ACCURACY
(PERCENT)

FOREST 642 113 5 136 6 902 71%

CROPLAND 42 6,042 13 63 42 6,202 97%

GRASSLAND 15 207 57 20 6 305 19%

SHRUBLAND 137 214 7 472 12 842 56%

SCRUBLAND 24 514 11 38 85 672 13%

TOTAL 860 7,090 93 729 151 8,923  

ACCURACY
(PERCENT) 75% 85% 61% 65% 56% Overall 

Accuracy 82%

Note: The table shows how often points independently selected and visually interpreted (8,923 points, shown in the rows of the table) are in agreement with the land use 
map, which was trained on 95,000 visually interpreted points. The rows show the newly interpreted points; the columns show the category these points fall under when 
overlaid onto the map. Thus a high number in the cells that intersect the same categories means that the interpretation of newly interpreted points were mainly in agreement 
with the interpretation of points used to train the land use classification model.
Source: WRI authors.

X = No data reported in the forest reference emission level (FREL).
a. Countries that used the GFC dataset either directly or indirectly in their FREL submission
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Figure 4 |  Proportion of Total (877) Donor Initiatives Supporting Various REDD+ Activities 
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Source: Silva-Chavez et al. 2015.

Conclusions from Multicountry 
Comparative Analysis of FREL Submissions
After reviewing 33 FREL submissions in which 
deforestation was included as a REDD+ activity, we 
conclude the following: 

▪▪ Countries are applying common guidance 
for developing FRELs as outlined in the 
Warsaw Framework, but direct comparison 
of deforestation rates across countries is not 
straightforward due to the different definitions 
used, years analyzed, and methods applied. 
Results represent a “fruit basket” of national and 
subnational estimates, which impedes the “apples 
to apples” comparison of deforestation rates 
across countries that many stakeholders in the 
REDD+ community and beyond may desire (and 
may assume is possible). 

▪▪ In addition to impeding cross-country 
comparison, different methodological 
choices have major implications for resulting 
deforestation estimates in FRELs and future 
monitoring estimates, and subsequently 
for a country’s potential to obtain future 
results-based payments. For example, a key 
area of methodological inconsistency and 
ambiguity is how countries are addressing the 
impermanence of tree cover within shifting 
cultivation cycles and the resulting impacts on 
their deforestation and degradation estimates.

▪▪ While much of this variability can be attributed 
to the different forest contexts of REDD+ 
countries, the development of national forest 
monitoring systems has also been influenced by 
advice provided by different capacity-building 
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organizations with respect to methods. Greater 
consistency and comparability could potentially 
be achieved if there were greater international 
consensus on implementing best practice 
monitoring methods for REDD+.18

▪▪ The accuracy and precision of country-reported 
deforestation rates is highly variable and 
sometimes goes unreported. Results from both 
sample-based and wall-to-wall map-based 
approaches can produce accurate and precise 
results if properly implemented and inaccurate 
and imprecise results if not. While debates 
tend to center on the choice of methods, it 
is perhaps more useful to focus on quality of 
implementation and how it can be improved. 

▪▪ Available and forthcoming finance for the 
REDD+ readiness phase totals at least $6 billion, 
but no comprehensive information exists to 
quantify investments channeled specifically to 
develop the national forest monitoring systems 
assessed in this paper. This information is needed 
for a cost-effectiveness analysis that could further 
inform decisions about the most appropriate and 
sustainable methods for monitoring deforestation 
under REDD+. While countries may aspire 
to create the most accurate systems possible, 
a key question should be the marginal cost of 
incremental gains in accuracy and precision.

Table 6 |  �Major Sources of Finance for REDD+ Readiness Phase 

FUND YEARS AMOUNT  
(MILLION US$)

World Bank Forest Carbon Partnership Facility (FCPF) Readiness Fund 2008–17 370

UN-REDD
2008–16 280

2018–20 27

USAID
2015–16 200

2017 86

Governments of Germany, Norway, and the United Kingdom 2015–20 5,000

Total 2008–20 5,963

Source: Lujan and Silva-Chavez, 2018.

GLOBAL FOREST MONITORING 
Prior to the publication of Global Forest Change 
(GFC) data by Hansen et al. (2013), global 
estimates of forest cover or forest cover change 
were produced by aggregating national inventory 
data. Some earlier sample-based satellite 
monitoring products had global coverage (e.g., 
FAO’s FRA2010 Remote Sensing Survey [FAO, 
JRC, SDSU, and UCL 2009]) and the TREES 
project (Achard et al. 2002), but the GFC data 
represent the first globally consistent, wall-to-wall 
maps of tree cover loss and gain that could also be 
disaggregated into easily downloadable national 
and subnational change statistics. 

Definitions in the GFC Product
Forest. The GFC dataset does not define forest 
per se, but rather defines tree cover in the year 
2000 as any vegetation greater than 5 meters 
in height across a range of canopy densities 
(1–100 percent) present within a single Landsat 
pixel with an area of approximately 0.1 hectare. 
This definition is a biophysical one and does not 
incorporate information about land use. The tree 
cover map can be filtered to include areas above a 
certain tree canopy density threshold (e.g., greater 
than 30 percent).
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Natural forest. The GFC dataset does not define 
or distinguish natural forest from other forms of tree 
cover, including forest plantations and tree crops. 
Some have criticized the GFC dataset because it fails to 
distinguish conversion of natural forest from cyclical 
forestry dynamics and plantation rotations (Tropek et 
al. 2014). However, the same Global Land Analysis and 
Discovery (GLAD) team at the University of Maryland 
that produced the GFC maps has also produced maps 
and data that can be used in combination with the 
GFC data to approximate these distinctions, including 
various components or proxies of natural forests such 
as “intact forest landscapes” (Potapov et al. 2008, 
2017), “tropical hinterland forests” (Tyukavina et al. 
2016), and Indonesian “primary” forests (Margono 
et al. 2014). In addition, forest and tree plantations 
were mapped in six tropical countries using visual 
interpretation of high resolution satellite imagery 
(Petersen et al. 2016).

Deforestation. The GFC dataset neither defines nor 
purports to measure deforestation. Rather, it maps 
“tree cover loss,” defined as the complete loss of tree 
cover within a 30-meter pixel. Deforestation, while 
variably defined, is a subset of all tree cover loss. For 
these reasons, the Global Forest Watch website, which 
is the best known point of access for the GFC data, 
uses the term “tree cover loss” to describe the GFC 
data rather than “deforestation.” Other forms of tree 
cover loss that may not be considered deforestation 
according to UNFCCC and FAO definitions include 
loss associated with natural disturbances such as 
hurricanes and windstorms, or with land management 
practices such as rotational forestry, smallholder 
agroforestry systems, or shifting agriculture. Because 
the GFC dataset does not specifically measure 
deforestation without using additional data and 
analysis to classify various forms of tree cover loss), its 
applicability for REDD+ has been debated by the forest 
monitoring community. 

Reference Period
The GFC data were published in 2013 and included 
global tree cover extent in 2000 and gross changes 
(annual loss and total period gain) between 2001 and 
2012. The annual loss data are updated annually, 
most recently through the year 2017.19 

Method Used for Estimating  
Deforestation Rates
The GFC dataset maps tree cover loss across all 
land except Antarctica and Arctic islands using the 
“direct change detection” approach described above, 
in which Landsat multispectral satellite imagery20 is 
analyzed at a spatial resolution of approximately 30 
meters. Cloud-free observations were assembled and 
a classification algorithm was applied with training 
data to identify pixels of tree cover loss. More than 
1.5 million satellite images have been processed and 
analyzed, including more than 600,000 Landsat 
7 images for the initial period 2000–12 and an 
additional 900,000 Landsat 5, 7, and 8 images for 
annual updates through 2017. The GFC maps have 
been used either directly or indirectly in 9 of the 33 
deforestation FREL submissions (Table 7). Some 
countries have used sample-based approaches 
with the GFC map used as a stratification tool, 
while others have nationalized the GFC algorithm 
and developed additional analytical processes to 
differentiate deforestation from other forms of 
tree cover loss. No REDD+ country has estimated 
deforestation as the sum of tree cover loss pixels in 
the GFC map.
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Table 7 |  �REDD+ Countries Working with the Global Land Analysis and Discovery (GLAD) Team at the University of Maryland 
(UMD) on National Forest Change Mapping, and/or Using the GFC Data in their FREL Submissions

REGION COUNTRY WORKED WITH GLAD TEAM AT  
UNIVERSITY OF MARYLAND

PARTNERS/
DONORS HOW GFC DATA WERE USED IN FREL

LA
TI

N 
AM

ER
IC

A

Perua
Forest monitoring in support of REDD+ 
and IPCC GHG reporting, 2000-current. 
Operational forest monitoring

MINAM, 
SilvaCarbon Nationalized GFC algorithm

Colombiaa Comprehensive land-cover monitoring for 
IPCC GHG reporting. 2000-ongoing

IDEAM, 
SilvaCarbon Nationalized GFC algorithm

Ecuador Forest cover change quantification  
2000-2011 SilvaCarbon Project outputs not (yet) used for FREL

Guatemala Tree canopy cover monitoring 
2000-current in support of REDD+ and NFI Project outputs not (yet) used for FREL

Hondurasa GFC map used to make comparisons and improve the 
national data generated

Mexico Forest extent, structure, and change 
assessment, 1985-2014 CONABIO Project outputs not (yet) used for FREL

AF
RI

CA

Ethiopiaa Stratifier

Dem. Rep. 
Congo

Forest monitoring 2000-current, forest 
type mapping, habitat modelling

USAID, OSFAC, 
JGI Project outputs not (yet) used for FREL

Madagascara GFC map used to fill pixels with shadows and clouds in 
national map

Nigeria Stratifier

Rep. of the 
Congoa

Forest monitoring 2000-current, forest 
type mapping, habitat modelling USAID, CNIAF Stratifier

Cameroon Forest monitoring 2000-current, forest 
type mapping, habitat modelling

USAID, 
SilvaCarbon Project outputs not (yet) used for FREL

SO
UT

H 
AN

D 
SO

UT
EA

ST
 A

SI
A

Vietnam National forest monitoring in support of NFI FIPI, 
SilvaCarbon Project outputs not (yet) used for FREL

Bangladesh Tree canopy cover monitoring 
2000-current in support of REDD+ and NFI

RIMS, 
SilvaCarbon Project outputs not (yet) used for FREL

Cambodia Tree canopy cover monitoring 
2000-current in support of REDD+ and NFI Project outputs not (yet) used for FREL

Indonesia
Forest cover change quantification 1980-
2000, forest monitoring system, wetlands 
mapping

CLUA, USFS, 
MoF, LAPAN Project outputs not (yet) used for FREL

Lao PDRa GFC data used to assess length of shifting 
 cultivation cycle

Myanmara Stratifier

Nepal Project outputs not (yet) used for FREL

Sri Lankaa Stratifier

Note: a. Countries that both worked with the UMD/GLAD team and used the GFC dataset either directly or indirectly in their FREL submissions.
Source: WRI authors.
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Accuracy of GFC Data 
The GFC data’s authors have published two accuracy 
assessments, the first in the original publication by 
Hansen et al. (2013) and the second in a subsequent 
publication by Tyukavina et al. (2015). In the first 
study, the authors evaluated the “true” change of 1,500 
sample blocks (120 meters on each side) using Landsat, 
Moderate Resolution Imaging Spectroradiometer 
(MODIS), and Google Earth imagery. These reference 
data were then compared to the GFC maps. At the global 
scale, the loss map had user’s accuracy of 87 percent and 
producer’s accuracy of 88 percent (Table 8). The authors 
also evaluated the temporal accuracy of the loss data and 
found that the year assigned to the observed tree cover 
loss was correct 75 percent of the time, and was correct 
within one year before or after 97 percent of the time.

The second study, by Tyukavina et al. (2015), assessed 
the accuracy of the GFC loss map specifically for tropical 
forests within each of seven forest cover strata associated 
with varying thresholds of forest height, canopy cover, 
and intactness (Figure 5). On each continent, user’s 
and producer’s accuracies for the forest loss class 
were above 80 percent except for Sub-Saharan Africa, 
where low producer’s accuracies (i.e., extensive areas 
of “missed” loss) were likely related to the prevalence 
of small-scale disturbance, which is harder to detect at 
30-meter resolution (Table 9). They also found that most 
of the missed loss occurred within one pixel of mapped 

loss, suggesting that most of the missed loss occurs 
on the edges of other loss patches. Based on these 
results, the authors conclude that Landsat resolution 
assessments of forest change may lead to significant 
underestimation of forest cover loss in forests 
with low canopy cover and in areas of small-scale 
disturbance such as shifting cultivation areas.

One disadvantage of sample-based accuracy 
assessments is that they are applicable only at the 
scale for which they were designed; the accuracy of 
the GFC tree loss data has been assessed only for 
the global and strata-specific scales of interest. This 
means that the accuracy of the GFC data within each 
REDD+ country cannot be assessed until a national 
accuracy assessment is carried out with its own 
sampling design. 

Process and Costs
Hansen et al. (2013) apply the direct change 
detection approach described above that involves 
an automated workflow followed by visual checks. 
They created the original tree cover loss maps from 
2001 to 2012 using Google Earth Engine (GEE), a 
cloud computing platform for Earth observation data. 
GEE automatically handled data management tasks 
such as data format conversion, reprojection and 
resampling, and associating image metadata with 
pixel data. 

Table 8 |  �Accuracy Assessment of Forest Loss at Climate Domain and Global Scales, 2000–12 

CLIMATE DOMAIN USER’S ACCURACY (PERCENT) PRODUCER’S ACCURACY (PERCENT) OVERALL ACCURACY (PERCENT) SAMPLE SIZE

Tropical 87.0 83.1 99.5 628

Subtropical 79.3 79.4 99.7 295

Temperate 88.2 93.9 99.8 298

Boreal 88.0 93.9 99.3 258

Global 87.0 87.8 99.6 1500

Source: Hansen et al. 2013.
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Figure 5 |  �Stratification Design Used to Develop Accuracy Measures for the Global Forest Change Tree Cover Loss Product 
for Three Tropical Forest Regions

Source: Tyukavina et al. 2015.
Note: Factors used in the stratification were tree height (meters), tree canopy cover (percent), and intactness (IFL2000, see Potapov et al. 2008). Numbers in key refer to forest strata: 1- low cover; 
2 - medium cover short; 3 – medium cover tall; 4 – dense cover short; 5 – dense cover short intact; 6 – dense cover tall; 7 – dense cover tall intact. 
Source: Tyukavina et al. (2015).
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The original GFC dataset has been updated five 
times since its creation and now includes forest loss 
up to 2017 (Version 1.5). The analysis method has 
been modified in many ways, resulting in improved 
accuracy in recent updates but also inconsistency of 
methods across the full time series. Key modifications 
affecting the 2011–17 data include the incorporation 
of new data (e.g., incorporation of Landsat 8 in 
the model) for the target year, reprocessed data 
for previous years,21 and improved modelling and 
calibration. These modifications have resulted in 
better detection of boreal loss due to fire, shifting 
agriculture in tropical forests, selective logging, and 
plantations with short rotation cycles. Eventually, 
a “Version 2.0” is expected to apply the updated 
methods to the 2000–10 data. The 2013 update was 
notable because it incorporated all Landsat sensors 
(including Landsat 5 and 8), as opposed to the 
original model which relied solely on Landsat 7. The 
historical images from Landsat 5 helped fill in gaps 
caused by cloud cover, smoke, and limited satellite 
coverage, while new clear images from Landsat 
8 helped recalibrate the mapping algorithms and 
make them more sensitive to change. As a result, 
the new analysis detected 6 percent more tree cover 
loss globally for 2011 than the original dataset, 
and 22 percent more loss for 2012. The 2014 data 
release also reprocessed loss data for the years 2012 
and 2013 and the new satellite imagery inputs and 
improved calibration resulted in additional loss 
detection for those years.22

The operational cost to update the GFC data product 
annually is approximately US$500,000 per year; 
this excludes costs associated with making these 
data accessible to a broad audience through the 
Global Forest Watch platform. The costs of initial 
development and continued enhancement of the GFC 
system, including purchase of major technological 
infrastructure, are likely substantially higher but 
are difficult to estimate. The GFC product builds 
on prototyping activities that began under a World 
Resources Institute project on forests and landscapes 
in Indonesia (known as Project POTICO)23 and 
the CARPE program24 in Central Africa funded by 
USAID. In-kind cloud computing contributions 
from Google supported global scaling of the 
method. Additional investments have been made to 
nationalize the GFC dataset in the countries listed in 
Table 7, and we do not have information regarding 
the costs of these efforts.

Table 9 |  �Accuracies of the Forest Loss Class in the GFC 
Data for Three Tropical Forest Regions 

STRATUM

ACCURACY OF TREE COVER LOSS MAP 
(PERCENT)

USER'S PRODUCER'S

LA
TI

N 
AM

ER
IC

A

1 89 34

2 92 75

3 100 89

4 98 89

5 93 87

6 93 97

7 100 96

Total 96 83

AF
RI

CA

1 93 32

2 100 37

3 91 54

4 100 84

5 100 100

6 100 80

7 93 93

Total 96 52

SO
UT

H 
AN

D 
SO

UT
HE

AS
T 

AS
IA

1 100 33

2 100 64

3 89 82

4 88 82

5 74 82

6 97 100

7 100 100

Total 92 86

Note: Strata 1-7 for each continent represent progressively taller, more intact forests with more 
closed canopies; see Figure 5 for stratification design. 
Source: Tyukavina et al., 2015.
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Conclusions Regarding Overall Benefits and 
Limitations of the GFC Data for REDD+
▪▪ The GFC tree cover loss algorithm is semi-automated, 

updated annually, and provided free of charge to the 
global forest monitoring community at relatively low 
operational cost. 

▪▪ The GFC dataset neither defines nor measures 
deforestation as a subset of tree cover loss, although 
this is also true for many of the national forest 
monitoring systems described earlier. Several 
countries have taken steps to apply and/or nationalize 
the GFC data to arrive at deforestation estimates for 
REDD+. 

▪▪ The GFC tree cover loss data are derived using wall-
to-wall direct change detection methods, and reported 
accuracy at both global and tropical scales is on the 
higher end of the range of map accuracies reported 
in country FRELs. The lack of national scale accuracy 
assessments for the GFC dataset in all countries 
precludes direct comparison, but the GFC loss data 
have been shown to be most accurate in monitoring 
the loss of tall, closed canopy intact forests and least 
accurate in areas with open forest cover and where 
small-scale clearing dominates. 

▪▪ The GFC dataset can be adjusted for local forest 
definitions by changing the minimum tree cover 
canopy density (e.g., from 30 percent to 10 percent), 
filtering out plantations, and/or filtering out tree cover 
below a country’s defined minimum forest area (e.g., 
from 0.1 hectare to 1 hectare). The GFC data currently 
cannot be adjusted to local definitions of forest height; 
it is fixed at 5 meters. 

▪▪ Incremental changes to the GFC methodology to 
improve accuracy have created inconsistency in the 
time series, specifically for data before and after 
2011, although the University of Maryland/GLAD 
team plans to reprocess the entire time series using 
a consistent method in the future. Further, the GFC 
data extend back only to 2001, whereas some national 
reference periods extend to an earlier date. 

COMPARING NATIONAL TO GLOBAL DATA: 
HOW MUCH DO THEY DIFFER AND WHY?
Since the launch of Global Forest Watch, there has been 
substantial curiosity – and confusion – from the global 
community about how much and why GFC loss data 
differ from country-generated deforestation estimates. 
Below we compare the annual GFC loss data against 
deforestation estimates provided for 33 country-defined 
geographic boundaries, reference periods, and tree canopy 
density thresholds to ensure the best “apples to apples” 
comparison possible with readily available data. 

How Much Do Estimates Differ?
Across all 33 REDD+ countries evaluated,25 the sum of 
nationally determined average deforestation rates was 7.9 
million hectares per year (Mha/yr) vs. an annual average 
rate of GFC tree cover loss of 6.9 Mha/yr. Deforestation 
rates of REDD+ countries in Latin America were almost 
identical to GFC tree cover loss (3.38 vs. 3.40 Mha/yr) 
and differed by approximately 17 percent for REDD+ 
countries in South and Southeast Asia (1.7 vs. 2.0 Mha/
yr). Brazil’s deforestation estimate was lower than GFC 
in the Amazon biome but higher than GFC in the Cerrado 
biome, so the overall deforestation rate for the two 
biomes combined reported by Brazil are similar to GFC 
tree cover loss estimates (2.5 vs. 2.4 Mha/yr for Brazil 
vs. GFC, respectively). In contrast, nationally reported 
deforestation rates for REDD+ countries in Africa were 
approximately twice as high as the GFC rate (2.8 vs. 1.4 
Mha/yr). 

Figure 6 indicates that across all REDD+ countries in 
aggregate, GFC tree cover loss represents a relatively 
unbiased proxy for deforestation, but large differences 
between nationally reported and GFC data remain for 
certain countries, particularly in Africa (Figure 7). 

It is beyond the scope of this paper to explain 
discrepancies for all countries; in the following section 
we highlight five representative case studies about why 
national deforestation estimates may differ from the GFC 
tree cover loss data.
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Figure 6 |  �Comparison of Average Annual Deforestation Rates Between REDD+ Country-Reported Estimates and  
GFC Tree Cover Loss Data
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Source: WRI authors.
Note: The blue dotted line represents a linear trendline through all country data points. Points above the 1:1 line reflect GFC estimates that are higher than the country estimates, and points below 
the 1:1 line reflect GFC estimates that are lower than the country estimates.

Why Do Country-Reported Deforestation 
Estimates Differ from GFC Estimates?  
Five Case Studies
As demonstrated in Figure 7, tree cover loss estimates 
generated from the GFC product can be substantially 
different from national deforestation data reported in 
FRELs. In some cases, national estimates may be better 
than the global data, but in others questions remain about 
the quality of the country data and the execution of the 
methods used. In still other cases, estimates may differ 
substantially when compared directly, but align more 
closely once global tree cover loss data are filtered (e.g., 
to match national forest definitions). Below, we describe 
possible reasons for discrepancies as exemplified through 
five case studies.

1. Different forest definitions: Indonesia 
For the period of overlap (2000–12), the GFC estimate 
of tree cover loss for Indonesia is nearly double the 
deforestation estimate reported in Indonesia’s FREL. 
Through the analysis described below, we demonstrate 
that this discrepancy likely arises from differing 
definitions of forest.

First, we compared the total forest extent in Indonesia 
for the year 2000 as depicted by a map produced using 
the GFC tree cover data and a map published by the 
Indonesian Ministry of Environment and Forestry 
(MoEF). We found large discrepancies between the GFC 
and MoEF maps with respect to the location (Figure 
8A) and amount (Figure 8B) of forest cover. Both maps 
applied Indonesia’s definitional criteria of minimum 
tree height (5 meters) and crown cover (30 percent) 
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Figure 7 |  �Comparison of Average Annual Deforestation Rates from REDD+ Countries vs. Average Annual Rate of  
Tree Cover Loss from the University of Maryland’s GFC Data

Country Deforestation Data GFC Tree Cover Loss Data
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Figure 7 |  �� �Comparison of Average Annual Deforestation Rates from REDD+ Countries vs. Average Annual Rate of Tree Cover 
Loss from the University of Maryland’s GFC Data (Continued)

Country Deforestation Data GFC Tree Cover Loss Data
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Figure 8 |  �Deforestation Estimates in Indonesia Varied Because of Different Definitions of Forest

Source: WRI authors.
Note: Comparison of forest monitoring data from University of Maryland’s (UMD’s) Global Forest Change (GFC) data and national data produced by Indonesia’s Ministry of Environment and Forestry 
(MoEF). (A) Spatial comparison of forest/tree cover extent in the year 2000 (applying a canopy density threshold of 30 percent for the UMD data; plantation boundaries for the year 2000 also shown); 
(B) Numerical comparison of forest/tree cover extent in the year 2000; (C) Numerical comparison of forest cover loss between 2003 and 2015 between MoEF and GFC; (D) spatial comparison of 
districts where differences in forest loss are highest between MoEF and GFC. 

A. Comparison of Mapped Forest Extent, 2000

C. Comparison is forest/tree cover loss, 2003-15

B. Comparison of Forest Extent, 2000

D. �Areas Where Difference in Forest Loss Estimates between MoEF 
and GFC Are Greatest

50 

0 

100 

150 

200 

250 

GFCMoEF
Fo

re
st 

Ex
ten

t 2
00

0 (
Mh

a)

Fo
re

st 
Lo

ss
, 2

00
3–

20
15

 (M
ha

)

0

5

10

15

20

25

30

GFCMoEF

Area of forest extent agreement

Additional areas of GFC tree cover

Loss within area of forest extent agreement
Additional loss in GFC primary forest
Additional loss in areas of GFC tree cover
Additional loss in MoEF areas

EARLY LOSS (03-06) LATE LOSS (14-15)

Additional GFC primary forest

Additional MoEF forest

MoEF forest (2000)

GFC tree cover (2000)

Margono et al. primary forest (2000)

Agreement

Plantation (2000)



30  |  

2. Different methods: Ethiopia, Myanmar, Nigeria, 
Republic of Congo, Sri Lanka
In countries where GFC maps were used to inform a 
stratified sampling design, deforestation estimates 
from both map- and sample-based assessments 
were provided in the FREL. In all cases, sample-
based approaches yielded higher deforestation 
estimates than those derived from the GFC map 
alone (Table 10). Assuming the sample-based 
assessments were designed and implemented 
correctly and contained enough sample points to 
be representative of the stratum (see Box 2), this 
difference suggests that the GFC maps of tree cover 
loss significantly underestimate deforestation in 
these countries. This is likely true, as these countries 
typify the locations where the GFC algorithm has 
been shown to underestimate tree cover loss, 
namely in smallholder landscapes and in open, dry 
forest areas.

since the GFC data can be easily adjusted for these 
parameters. However, the maps use different minimum 
mapping units: the MoEF map considers only forest 
patches exceeding 6.25 hectares while the GFC 
map identifies areas with tree cover as small as 0.1 
hectare, meaning that the GFC map better matches 
Indonesia’s official minimum area for defining forest 
(0.25 hectare) than the MoEF map. However, the GFC 
map includes tree cover classes that do not meet the 
criteria of Indonesia’s forest definition for REDD+. 
As a result, the GFC map overestimates forest area by 
including both forest and agricultural tree plantations. 
However, Figure 8A also suggests that the MoEF map 
excludes large areas of tree cover that technically 
met Indonesia’s biophysical forest definition (e.g., 
30 percent tree cover threshold), but that were not 
counted by Indonesia as forests because they were 
mapped as a different (nonforest) land cover class. 
Only 7 percent of areas with over 30 percent tree 
cover in the GFC map that were not mapped by MoEF 
as natural forests were mapped by MoEF as forest 
plantations; the majority were classified by MoEF 
instead as scrubland, swamp scrubland or “dry rice 
land with scrub.” The MoEF map more closely matches 
primary forests mapped by Margono et al. (2014; 
Figure 8B).

Differences between forest base maps in Indonesia 
in 2000 help to explain differences in estimates 
of forest loss mapped since that year. Because the 
GFC data identify a much larger forest area to start, 
it also identifies more change over time. When we 
compared rates of forest loss only in areas where the 
GFC and MoEF maps agree about forest extent, we 
found a much closer alignment—the GFC estimate of 
loss is approximately 10 percent higher than MoEF 
deforestation for the period 2003 to 2015 (Figure 8C). 
GFC and MoEF rates of forest loss differ most in Riau 
and West Papua provinces (Figure 8D). 
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Table 10 |  �Difference between Annual Deforestation Rates Derived from Wall-to-Wall Maps vs. Stratified Sampling

COUNTRY REFERENCE 
PERIOD

MAP-BASED 
ESTIMATE  
(HA/YR)

SAMPLE-BASED 
ESTIMATE  
(HA/YR)

MAGNITUDE OF 
DIFFERENCE 

BETWEEN MAP AND 
SAMPLE ESTIMATES 

(PERCENT)

NUMBER OF 
SAMPLES IN LOSS 

STRATUM

 PERCENT OF 
TOTAL SAMPLES 

IN LOSS 
STRATUM

Ethiopia 2000–13 28,630 91,769 3.2x (+221 percent) 84 4

Myanmar 2005–15 2,457 8,495 3.5x (+246) 310 16

Nigeria 2004–14 4,238 15,440 3.6x (+264) 26 6

Republic of Congo 2000–12 10,583 12,083 1.1x (+14) 200 22

Sri Lanka 2000–10 2,339 8,088 3.5x (+246) 102 11

Figure 9 |  Comparison of maps of forest extent and deforestation in Ghana, 2001–15

Source: Ghana FREL submission to UNFCCC, p 29. (B) WRI authors.
Note: In accordance with Ghana’s definition, closed forest was defined in the GFC map as areas with canopy density greater than 60 percent and open forest was defined as areas with canopy 
density between 15 percent and 60 percent.

A. Map with Data from Ghana's Forestry Commission B. Map with Data from the GFC Algorithm

Ecozones Closed Forest Open Forest Forest Loss, 2013–2015 Forest Loss, 2010–2013 Forest Loss, 2000–2010
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3. Uncertainty in quality of methods: Ghana
Although the accuracy of Ghana’s deforestation map has 
not yet been assessed, in its FREL submission Ghana 
indicates an intention to perform an accuracy assessment. 
Spatial data for Ghana (Figure 9) were not publicly 
available to enable a detailed comparison against the GFC 
data like we performed for the Indonesia example above. 
However, comparisons were still possible based on the 
technical details included in Ghana’s FREL. 

Ghana defines its forest using a minimum area threshold of 
1 hectare, a height threshold of 5 meters and a canopy cover 
threshold of 15 percent. Under Ghana’s Forest Preservation 
Program, closed forests are classified as those with canopy 
cover exceeding 60 percent and open forests are classified 
as those with canopy cover of 15–60 percent. To map 
deforestation between 2000 and 2015, Ghana used a post-
classification change detection method, using 2000 and 2010 
maps produced for an earlier project and 2013 and 2015 
maps produced later by the Ghana Forestry Commission. All 
maps used Landsat 7 and 8 images; the 2010 map also used 
ALOS (radar) images. Figure 9 shows a spatial comparison 
between Ghana’s data and GFC data (with a minimum 15 
percent canopy density threshold applied to the GFC data to 
match Ghana’s definition), and Figure 10 compares rates of 
deforestation/tree cover loss for Ghana’s reference period 
of 2001–15. For closed forests, the difference between 
Ghana’s average rate of deforestation differs from GFC’s 
overall rate of tree cover loss by approximately 15 percent. 
However, Ghana also includes vast areas of deforestation in 
open forests that are not detected in the GFC map (Figure 
9), leading to a reported deforestation rate five times higher 
than that estimated from GFC data. This level of discrepancy 
was seen in other countries with large areas of dry, open 
forests (Ethiopia, Nigeria); these countries addressed the 
underdetection of tree cover loss in the GFC product using 
sample-based approaches.

Ghana did not use a sample-based approach but instead 
used a post-classification change detection methodology, 
which combines errors from each map in the series and 
can therefore lead to inaccurate results. The ability of this 
method to accurately depict change depends on the quality 
of each map in the time series. Several potential issues with 
Ghana’s land cover change maps were identified in the 
FREL:

▪▪ Maps for different years were produced by different 
teams using different sources of imagery and potentially 
different methods for preprocessing and classifying 
images. 

▪▪ The 2015 map shows large areas of open forest all over 
the country that are not present in earlier maps.

▪▪ A large shift from grasslands to open forest was 
apparent between 2013 and 2015.

▪▪ In the 2013 map, some areas have grassland pixels in 
the middle of lakes.

▪▪ Large areas in the Upper East region in the 2013 map 
appear to change drastically from the 2010 map, 
mostly arising from confusion between cropland, 
grassland, and open forest. This may be due to 
seasonal differences in imagery dates.

Therefore, Ghana is an example of a country where large 
discrepancies may arise between nationally reported 
and GFC data due to a number of factors that cannot be 
evaluated in isolation; in this case, uncertainty about the 
loss of open forests is confounded by potential issues with 
the accuracy of changes mapped using a post-classification 
change detection methodology.

Figure 10 |  �Comparison of Data from Ghana’s Forestry 
Commission and the GFC for the Average Rates 
of Forest/Tree Cover Loss, 2001–15. 
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Note: In Ghana’s estimate, dark green represents loss in closed forests (canopy density 
greater than 60 percent) and light green represents loss in open forests (canopy density 
between 15 and 60 percent). In GFC’s estimate, dark green represents forest loss in all areas 
with canopy density greater than 15 percent.

Ghana FC = Ghana’s Forestry Commission; GFC = Global Forest Change data.
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Figure 11 |  �Deforestation estimates in Peru differed because of different definitions of deforestation and 
different training points

Source: WRI authors.
Note: Differences in B reflect only those resulting from the loss algorithm used and not from differences in forest extent.

A. �Differences in mapped forest extent in the Peruvian Amazon  
in the year 2000

B. �Difference in estimates of forest loss by province using global vs 
nationalized GFC model, 2001-2014
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4. Global vs. national algorithm: Peru
Peru is one of two countries that has “nationalized” 
the GFC algorithm and is running it in an operational 
environment. By nationalized we mean that the country 
has adapted the GFC algorithm to the national context 
by using country-specific training points that are visually 
interpreted and used to train the loss classification model. 
This nationalized model is used to generate deforestation 
data for FRELs. After aligning forest extent maps to 
analyze loss only within areas defined as forest by both 
UMD and Peru’s Ministerio del Ambiente (MINAM) 

(Figure 11A), loss estimated over the reference period 
using the GFC global vs. national algorithm differed 
by approximately 15 percent (see Table 9). Differences 
varied regionally, with the largest differences high in 
the Andes Mountains (Figure 11B) where permanent 
cloud cover leads to satellite data limitations. Although 
loss statistics are relatively well aligned between the 
two datasets at the national and subnational scales, the 
mapped location of loss varied more significantly. Less 
than half of all loss mapped between 2001 and 2014 using 
the global algorithm occurred in the exact same pixel 
locations as loss mapped using the nationalized algorithm; 

Non-forest

MINAM forest (2000)

GFC tree cover (2000 )
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Table 11 |  �Annual and Total Forest Loss in the Peruvian Amazon 2001–14, Comparing Estimates Derived from Global and 
Nationally Tuned Forest Change Models 

YEAR

FOREST LOSS 2001-2014 (HECTARES)
PERCENT DIFFERENCE BETWEEN 
PERU AND GFC LOSS ESTIMATES 

(FOR SAME EXTENT IN 2000)
LOSS: GFC GLOBAL LOSS: GFC GLOBAL LOSS: NATIONALIZED GFC 

FOR PERU

EXTENT: GFC 2000 EXTENT: PERU 2000 EXTENT: PERU 2000

2001  85,731  83,334  83,995 0.8

2002  80,189  77,267  79,831 3

2003  73,521  71,486  72,873 2

2004  101,016  98,455  93,146 6

2005  162,595  159,650  147,623 8

2006  88,671  85,290  74,501 14

2007  115,475  112,952  106,186 6

2008  126,322  123,372  105,704 15

2009  177,655  174,902  152,160 14

2010  142,025  139,746  136,205 3

2011  125,013  123,094  123,562 0.4

2012  274,751  270,167  149,476 58

2013  209,063  205,380  150,288 31

2014  205,199  202,088  177,570 13

Total  1,967,226  1,927,184  1,653,121 15

Annual Average  140,516  137,656  118,080 15

Note: Units represent tree cover loss in hectares. The year 2012 is highlighted as a year where GFC data diverge significantly from national data. 
Source: WRI authors.

the remainder of loss pixels were mapped in one or 
the other dataset but not both. Although both global 
and nationalized approaches use the same underlying 
satellite imagery, differences in results arise from the 
use of different training data to develop the forest loss 
classification model that transforms raw satellite data into 
a map of forest loss. 

How closely the loss estimates match between the global 
and national algorithms also depends on year, with 2012 
as a particularly divergent year (Table 11). One potential 
reason for this relates to the updating of the GFC global 

algorithm for 2013 and 2014, including improved 
calibration for Peru specifically. During these updates, 
2012 GFC loss estimates for Peru were revised (Table 12). 
However, we show that this change in data and methods 
was not a primary reason for the large difference between 
global and nationalized results; 2012 estimates from the 
original global algorithm for Peru were already much 
higher than national estimates, and the updated data and 
methods caused 2012 global results to increase in Peru by 
only 13 percent. 
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Table 12 | Annual Estimates of Tree Cover Loss for Peru across Multiple Updates of the GFC Data

YEAR ORIGINAL  
(2001-2012) 2013 UPDATE 2014 UPDATE 2015 UPDATE 2016 UPDATE 2017 UPDATE

2001 86,783 86,793 86,793 86,793 86,793 86,793

2002 81,057 81,135 81,135 81,135 81,135 81,135

2003 74,495 74,519 74,519 74,519 74,519 74,519

2004 102,072 101,979 101,979 101,979 101,979 101,979

2005 163,943 163,919 163,919 163,919 163,919 163,919

2006 89,595 89,494 89,494 89,494 89,494 89,494

2007 116,312 116,345 116,345 116,345 116,345 116,345

2008 127,126 127,252 127,252 127,252 127,252 127,252

2009 178,869 178,840 178,840 178,840 178,840 178,840

2010 143,055 143,065 143,065 143,065 143,065 143,065

2011 118,385 126,206 126,206 126,206 126,206 126,206

2012 247,151 270,602 278,379 278,379 278,379 278,379

2013 197,374 214,824 214,824 214,824 214,824

2014 188,016 211,643 211,643 211,643

2015 170,777 170,777 170,777

2016 238,078 238,078

2017 315,723

A more likely reason for the divergent results for the year 
2012 relates to the fact that Peru does not report tree cover 
loss caused by natural disturbances as deforestation. Once 
loss classification model results are generated, all loss due 
to flooding and river meandering (Figure 12A) is mapped 
automatically using annual water masks collected from all 
cloud-free image observations and removed. Then, visual 
analysis of change areas is performed and used to identify 
and label losses due to fires, landslides, and windstorms, 
with the remaining loss attributed to anthropogenic forest 
clearing. While the total area of natural disturbance in 

Peru is small, the annual rate of change due to natural 
disturbance fluctuates significantly (Potapov et al. 2014). 
In 2012, 18 departments in Peru declared a state of 
emergency due to flooding (REACH 2012), and large areas 
of tree cover loss in the GFC product can be seen in river 
valleys (Figure 12B). Therefore, most of the difference in 
tree cover loss estimates between the global vs. national 
algorithm in 2012 is likely related to the filtering out of 
natural disturbances by Peru to isolate tree cover loss 
caused by anthropogenic disturbance only.

Note: Values reflect all tree cover loss without a canopy density threshold applied.
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Figure 12 |  �Deforestation Estimates Differed in Peru Because Peru Does Not Count Tree Cover Loss Caused  
by Natural Disasters Like Floods

Note: (A) Pattern of annual natural forest loss due to river meandering that was removed from Peru’s national deforestation estimates in their FREL. (B) Example of 2012 tree cover loss from Global 
Forest Watch in Peru that is likely due to river meandering as a result of 2012 floods. This loss is included in the GFC tree cover loss estimate for Peru, but would be excluded in Peru’s 2012 national 
deforestation estimate.
 
Source: A. Potapov et al. 2014. B. Global Forest Watch. globalforestwatch.org

A. �Tree cover loss due to river meandering was removed from Peru’s 
deforestation estimates

B. �2012 tree cover loss in GFC product due to river meandering as a 
result of 2012 floods

5. Native vs. plantation forest: Chile
In many developing countries, tree cover loss is a good 
proxy for deforestation because deforestation is the 
dominant forest change dynamic. There is less agreement 
between tree cover loss and deforestation in countries 
like Chile, where forestry is the dominant change 
dynamic rather than permanent forest conversion for new 
agricultural land. Chile is a country with a long history 
of intensive plantation forestry operations, with large 
areas planted in stands of eucalyptus and pine that are 
harvested and regrown on short rotation cycles (Figure 
13A). In its FREL, Chile defines its forest as native forest 
and excludes planted forest. The majority of Chile’s 
deforestation from 2001 to 2013 was reported to be 
caused by large forest fires and the eruption of the Chaitén 

volcano in 2008. Unlike Peru in the example above, Chile 
counts these areas as deforestation despite their being 
caused by natural rather than anthropogenic disturbance. 

The GFC estimate of tree cover loss for Chile is nearly four 
times higher than the deforestation estimate reported in 
Chile’s FREL for the reference period 2001–13, even after 
excluding GFC loss occurring within Chile’s plantations 
(Figure 13B). The source of Chile’s deforestation data 
is cadastral maps, which are based on a combination of 
satellite and ground data. Deforestation data are broken 
into six regions, all reflecting different time periods with 
years ranging from 2006 to 2013. Methods for how these 
maps were created are not described clearly in the FREL, 
and the acccuracy of the change maps is not reported. 
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Figure 13 |  �In Chile, National and GFC Estimates Differed Because of Different Ways of Classifying Forest Plantations

Source: Plantation boundaries from Instituto Forestal de Chile (INFOR).

A. �Tree Cover Loss Inside and Outside Areas Mapped as Plantations, 
2001–13

B. Annual Deforestation and Tree Cover Loss Data from Chile and GFC
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CONCLUSIONS AND RECOMMENDATIONS  
TO INCREASE UTILITY OF GLOBAL  
DATASETS FOR NATIONAL ACCOUNTING  
AND REPORTING 
How countries measure and report emission reductions 
from avoided deforestation is of critical importance to the 
success of REDD+. Countries’ forest monitoring systems 
and MRV efforts must be widely perceived as credible by 
domestic and international stakeholders to enable flow of 
results-based payments. Even outside of REDD+, robust 
forest monitoring systems are also needed if countries 
plan to use forest emission reductions to meet their 
nationally determined contributions (NDCs) under the 
Paris Agreement. However, most REDD+ stakeholders 
lack the technical expertise necessary to understand the 
increasingly diverse and complex landscape of methods 
used by countries and international research organizations 
to monitor forests and estimate rates of deforestation. 
Resulting confusion and controversy surrounding 
differing estimates is not helping to engender needed trust 
in REDD+. 

In an attempt to bring greater clarity to this issue, this 
paper provided an overview of methods, results, and 
associated costs for estimating deforestation as well as 
a systematic analysis of how and why estimates from 
different sources vary. In particular, we compared 
methods and estimates arising from countries via their 
FREL submissions with those from Hansen et al.’s (2013)
Global Forest Change dataset. 

Conclusions
The GFC tree cover loss data represent a 
transparent, complete, consistent, and reasonably 
accurate way to monitor tropical deforestation 
in countries where deforestation is the dominant 
forest disturbance dynamic. Even without 
adjustments made to accommodate national land use 
definitions, GFC tree cover loss data align well with 
REDD+ country deforestation data in aggregate. GFC 
loss data are most accurate in monitoring the loss of tall, 
closed canopy intact forests and least accurate in areas 
with open forest cover and where small-scale clearing 
dominates. With appropriate filtering to accommodate 
different national forest definitions, the alignment in 
many cases would likely improve. In other cases, open 
questions remain about the exact reasons for differences 
between national and global data. 

The GFC data are useful in a national context in 
different ways. To date, 9 of 33 countries have used 
GFC data either directly or indirectly in their FRELs. This 
includes adapting the global algorithm to meet national 
needs (e.g., Peru, Colombia), using the GFC data as a 
stratifier in sample-based approaches (e.g., Ethiopia, 
Myanmar, Nigeria, Republic of Congo, Sri Lanka), or using 
the GFC data to improve and/or fill gaps in a country’s 
own monitoring system (e.g., Honduras, Madagascar). 

Both global and national forest monitoring 
systems have benefits and applications beyond 
their role in REDD+, and the GFC tree cover loss 
data are produced for a fraction of the cost of 
what has been invested to date in national forest 
monitoring systems. This indicates an opportunity 
to increase the use of global datasets in national 
accounting and reporting. National systems established 
for forest monitoring will entail long-term operational 
costs as well as costs to improve methods and leverage 
new technologies as they become available. For many 
countries, using freely available global data products 
as an input to or direct source of national deforestation 
monitoring could help reduce costs and improve long-
term sustainability, while still maintaining desired levels 
of accuracy. 

Recommendations
We make several recommendations on how to increase 
utility and adoption of global datasets for national 
accounting and reporting under REDD+. They fall under 
the categories of aligning global vs. national data, adapting 
off-the-shelf global data to meet national needs, and 
customizing the GFC algorithm to produce tailored, wall-
to-wall national maps of deforestation. 

Align global and national deforestation 
monitoring products for consistency and country 
needs. Inconsistent results among countries, combined 
with the high costs of creating and maintaining unique 
national forest monitoring systems, suggest that REDD+ 
countries could consider tailoring freely available global 
tree cover loss data to meet national reporting needs. 
Conversely, the international remote sensing community 
could deliver products that align more closely to what 
countries need for national forest monitoring, such as 
maps of land use change rather than land cover change. 

To help align these data, REDD+ countries 
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should make their spatial forest monitoring 
data available for public review in a centralized 
location as part of the FREL technical assessment 
process. This would enable analysts to critique 
and compare national and global monitoring efforts 
more easily, leading to continuous improvement and 
comparability of forest monitoring at all scales. REDD+ 
countries stand to benefit collectively from more aligned, 
cheaper, and more credible forest monitoring systems 
that achieve greater consistency in results at national and 
international levels. 

Adapt and assess global products to meet national 
needs for REDD+. The GFC tree cover data can be 
filtered to accommodate any country’s forest definition. 
Then, the resulting map can be used as an input to 
stratified sampling to quickly generate a national average 
historical deforestation rate with a known uncertainty 
range at relatively low cost. The accuracy of the global, 
“off the shelf” map can also be assessed for a national 
context. If the global tree cover loss map that has been 
adapted for the national context is assessed to be accurate 
at the national level, if the map errors are unbiased, and 
if the map-based tree cover loss estimates fall within 
the uncertainty bounds of sample-based estimates, then 
the off-the-shelf GFC tree cover loss map and resulting 
statistics should be deemed as fit for purpose by the 
climate policy community as an accurate, precise, and 
cost-effective deforestation monitoring product for the 
country of interest.

Customize the GFC algorithm to produce more 
refined national deforestation maps. While 
sample-based methods allow for estimation of a single 
national deforestation rate with a known uncertainty 
range at relatively low cost, countries should consider the 
additional benefits of a customized, wall-to-wall national 
deforestation map, which allows for total deforestation to 
be disaggregated across time and space. This type of map 
is useful for understanding where deforestation is occurring 
and for designing location-specific deforestation reduction 
policies. All available cloud-free Landsat satellite imagery 
is processed for locations around the world to produce 
the annual Global Forest Change product. The same data 
inputs and algorithms can be easily tailored for national 
or subnational application (by incorporating additional, 
country-specific training sites to train the tree cover loss 
classification model) thus producing more accurate national 
deforestation maps than those currently available as 
subsets of the GFC product.

ENDNOTES
1.	 And the annual updates thereafter, visualized on Global Forest Watch at 

globalforestwatch.org.

2.	 The five REDD+ activities include Reducing Emissions from Deforestation 
and Forest Degradation, “plus” the role of forest conservation, 
sustainable forest management, and enhancement of forest carbon 
stocks.

3.	 And the annual updates thereafter, visualized on Global Forest Watch at 
globalforestwatch.org.

4.	 With the agreement on the Bali Road Map and Action Plan.

5.	 For example, the United States Landsat and European Sentinel programs.

6.	 Includes funds from public and private sectors and represents 
aggregate pledges and investments for the period between 2006 and 
2014. The majority of the finance pledged to date has been focused on 
capacity building and other “readiness” activities, rather than on paying 
for verified emission reductions from reduced deforestation.

7.	 And the annual updates thereafter, visualized on Global Forest Watch at 
globalforestwatch.org.

8.	 Of this total, this paper covers the 33 FREL submissions to the UNFCCC 
that include deforestation as a REDD+ activity; we did not analyze 
Malaysia because deforestation is not an included activity. For countries 
where more than one FREL was submitted (e.g., Brazilian Amazon), we 
reviewed only the latest submission. We reviewed modified submissions 
(those submitted by countries in response to technical assessment) 
where available.

9.	 The FRA forest definition has changed since reporting began. The first 
assessment in 1948 gave the same global forest area as today because 
the forest definition became more inclusive.

10.	 The final Conference of Parties decisions on REDD+ contain somewhat 
conflicting guidance on the need for consistency in national reporting. 
One paragraph states that the forest definition used by a country for 
REDD+ is not required to match that used in its national greenhouse 
gas inventory or its reporting to other international organizations such 
as FAO. If it does not match, the country must explain why and how the 
definition used for the FREL was chosen. However, another paragraph 
states that there should be consistency between the FREL and the 
national GHG inventory, and this is evaluated during the technical 
assessment process. 

11.	 UNFCCC Decision 1/CP16.

12.	 UNFCCC Decision 16/CMP.1, Annex 1d. 

13.	 Lao PDR FREL submission, p. 8.
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14.	 For example, Colombia adjusted its historical average deforestation 
rate upward in the FREL over a transitional period of five years to 
account for the then-possibility of ending the country’s long armed 
conflict and beginning a stable and lasting peace, which was 
expected to generate new dynamics of occupation and land use 
where deforestation patterns may be altered and differ from historical 
averages.

15.	 In the mid-1980s, companies that marketed Landsat images charged 
up to $4,400 for a single 185x170 kilometer “scene” for a single date in 
time (Reichardt 1999). 

16.	 Approach 3 is characterized by spatially explicit observations of land 
use categories and land use conversions, often tracking patterns at 
specific point locations and/or using gridded map products derived 
from remote sensing imagery. The data may be obtained by various 
sampling, wall-to-wall map-based techniques, or a combination of the 
two methods (IPCC 2006).

17.	 Horizonete. “10 Soluções Ambientais Que Dariam para Ser Feitas com 
o Dinheiro de Geddel.” http://www.edhorizonte.com.br/noticias/meio-
ambiente-e-geddel/.

18.	 The Global Forest Observation Initiative (GFOI) has produced a 
methods and guidance document to achieve this goal, but not all 
countries have applied it when developing their FRELs.

19.	 These data can be accessed via the Global Forest Watch at www.
globalforestwatch.org or through https://earthenginepartners.appspot.
com/science-2013-global-forest.

20.	 Includes data from Landsat 5 thematic mapper (TM), the Landsat 7 
thematic mapper plus (ETM+), and the Landsat 8 Operational Land 
Imager (OLI) sensors. 

21.	 Reprocessing of years 2011 and 2012 for the Version 1.1 update, 2012 
and 2013 for the Version 1.2 update, and 2014 for the Version 1.3 
update. The 2015 and 2016 global tree cover loss data did not include 
reprocessed estimates for previous years.

22.	 Global Forest Watch. “A Fresh Look at Forests 2011-2013.” Blog. https://
blog.globalforestwatch.org/data/a-fresh-look-at-forests-2011-2013.html. 

23.	 World Resources Institute. Forests and Landscapes Indonesia. http://
www.wri.org/our-work/project/forests-and-landscapes-indonesia.

24.	 USAID. Central Africa Program for the Environment. http://carpe.umd.
edu/.

25.	 We used the same geographic boundaries and years (after 2000) 
included in each country’s FREL. Because of the different time periods 
analyzed for each country, it was not possible to assign a specific time 
period for the total deforestation rate summed across all countries that 
is reported in this section. 
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